Development of new EBV-based vectors for stable expression of small interfering RNA to mimick human syndromes: application to NER gene silencing.

نویسندگان

  • Denis S F Biard
  • Emmanuelle Despras
  • Alain Sarasin
  • Jaime F Angulo
چکیده

We developed and characterized replicative small interfering RNA (siRNA) vectors for efficient, specific, and long-term gene silencing in human cells. We created stable XPA(KD) and XPC(KD) (knockdown) syngeneic cell lines to mimic human cancer-prone syndromes. We also silenced (HSA)KIN17. Several clones displaying undetectable protein levels of XPA, XPC, or (HSA)kin17 were grown for more than 300 days. This stability of gene silencing over several months of culture allows us to assess the specific involvement of these proteins in UVC sensitivity in syngeneic cells. Unlike XPA, (HSA)KIN17, and XPC gene silencing dramatically impeded HeLa cell growth for several weeks after transfection. As expected, XPA(KD) and XPC(KD) HeLa cells were highly UVC sensitive. They presented an impaired unscheduled DNA synthesis after UVC irradiation. Interestingly, XPC(KD) HeLa clones were more sensitive to UVC than their XPA(KD) or KIN17(KD) counterparts. Hygromycin B withdrawal led to the total disappearance of EBV vectors and the resumption of normal XPA or XPC protein levels. Whereas reverted XPA(KD) cells recovered a normal UVC sensitivity, XPC(KD) cells remained highly sensitive, suggestive of irreversible damage following long-term XPC silencing. Our results show that in HeLa cells, (HSA)kin17 participates indirectly in early events following UVC irradiation, and XPC deficiency strongly affects cell physiology and contributes to UVC sensitivity to a greater extent than does XPA. EBV-based siRNA vectors improve the interest of siRNA by permitting long-term gene silencing without the safety concerns inherent in viral-based siRNA vehicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19

 Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells.  Ai...

متن کامل

Small interfering RNA; principles, applications and challenges--

Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Enhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase

Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...

متن کامل

Design, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes

Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 3 9  شماره 

صفحات  -

تاریخ انتشار 2005